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Abstract: This paper shows that there exists a kernel function K and a
trimming proportion a* for the trimmed Jacknifed Kernel-‘ Density Estimators
that will render the kernel density estimators unbiased. Practical ways are

suggested for implementing the result of the paper.
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I. INTRODUCTION

An estimate of the probability density function f£f(x) of a distribution F
is an important input in most data analysis procedures. In applications, the
kernel density method of density estimation is extensively used. The
estimates obtained, using non-negative kernels, however, turn out to be
biased. The method of Jackknifing can be used to reduce the bias. Robust
methods sre preferable, in as much as in practice, data may contain outliers
and also, fhe pseudo-values in. jackknifing procedures sre fat-tailed 1in
distribution and are not independent. A simple alternative to make it robust
was developed by Hinkley and Wang (1980). The method consists in taking the

trimmed average of the pseudo-values.
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IX. KERNEL DENSITY ESTIMATORS

Given an 1iid sample Y;, Yé, cens Yn, it is often necessary to estimate

the density f(x) at s point x of the distribution F which generated the

random sample. Kernel density estimators, denoted by fn(x), form a class

of estimators used for this task; .they are defined by

£ 0 = nlhn i K [¥ ) (2.1)

. n
v=14

where n is the sample size;
hn is the window or band width and is chosen in an optimal manner 1in
the sense of integrated mean square error. It is a function of the
distribution F; hence we can write hn = hn(F); and

K(.) is the specified kernel function which satisfies:

(1) sup | k(x) | <o (2.2)

(i) [ kx)dx =1 ; (2.3

(iii) lim | xkx) | =0 (2.4)
X —

(ivy3reZ = (2.5)
[xX kx)dx=0fori=1,2, ..., r-1;

[ %" k(x) dx # 0; and

J 1 k() | dx <o

Remark: The usual choices for K(.) are probability density functions like the

normal distribution.
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IXII. KERNEL DENSITY ESTIMATORS AS STATISTICAL FUNCTIONALS

Let Fn‘denote the empirical distribution function determined by the

sample Yi, Yz, ces Yn thus

1 4]

F (x) = —i- Y5 (x-Y)

1=1
0 ift <O
where & (L) = { .
1 ift=z0
We can rewrite (2.1) as
- 1 X -y
fn<x)=I = k[ = RS (3.1)

This shows that fn(x) depends on the data Yi, Yz, ces Yn only through the
distribution function Fn; thus fn(x) is a functional of the form T(Fn).

Rustagi, Javier and Victoria (1983) derived its influence curve as

. _ 1 X -y 1 X -y
ti(Fn,x,y) = K[ h ] + 5 K[ 5 ] (3.2)

n n

where b= sup{hn}t At the underlyiﬁg distribution F, the influence curve is

t(Fixy) = K[ 252 ) (3.3)

IV. CHARAGTERIZATION OF A TRIMMED JACKNIFE ESTIMATOR AS A STATISTICAL

FUNCTIONAL

Following‘ Hinkley and Wang (1880), 1let the statistical functional

T(F) = f(x) be defined by T(Fn) = fn(x). Denote by Fn_j the empirical

distribution based on the observations Y;, 'Yz, s Yn with the jth

observation Y, removed. Then the jth pseudovalue P_ _; is defined by
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P, =nTE) - (n-1)TF, )

n-

= T(F) +(n-1) [ T(F) - T(F, )] (4.1)

for g =1, 2, ..., n.

Let these pseudo-values be arranged as ordered statistics

P < < ... =
n,-1 (n,-2) tn,=m

For a given trimming proportion a (say « = 0.05), we remove the first «
smallest and the o largest pseudo-values and average the remaining n(l-2a)
pseudo-values. This average is the o-trimmed jacknifed estimate for T(F) =

f('x) , given by

n - ra
1
T = - Z P (4.2)
n,a : (n,-pP
n (1 - 2a) 3 41

. rO(
where.r = [ na .

Using a Taylor’ s expansion for T(Fn) about the parent distribution F,
Hinley and ‘Hang (1980) evaluated the expression inside the square bracket in
(4.1), giving a characterization of‘Th‘a in terms of its first-order Von

Mises derivative: .

f - [ - 1 o, .
Pn’a = £ (F) + - z tigF,xj) + Op(l/n) (4.3)
ETO
where
1 1-o - :
t*F) = ————— J L™ G du s (4.4)
1 - Za ot

L(z) = Pr[ T(F) + 1 (F3Y) = z] ; » ° (4.5)
A, _d - , _ my i
ti(E,x) = 1% [ TCF + tkéx Fy) E;(F) 3 +=0 (4.6)
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" The func£ion defined by (4.6) is the first-order Von Mises derivative,

also called the influence curve, of the statistical functional T(F), (Hampel,
1974) where bx is the degenerate distribntion function with mass concentrated

at x.

o

t3E0 = (4, (F0lL ™ + ELL,(Fi ) (4.7)

tz(F;x,Y) is the second order Von Mises derivative; it is zero for kerneal

density estimators and finaily [ti(F;x)];~q is defined by
L '(1-a)  if t (F;x) > L' (1-e0
(1- 20008, (F301) ™ = 4 ¢ (Fix)  if LTe) € ¢ (Fix) S L7(1-a)  (4.8)

L7 o) if £ (F3x) < L' (o)

V. THE BIAS FUNCTION

Using equations (4.3) - (4.8) with T(F) and tl(F;x) replaced by f(y) and

[ 1 K[ X — ¥ ] - m(x) ] respectively with

b b
[o 0]
m(x)sg[%K[X;Y]]:L %K[E‘——%—V]d}?(y) (5.1)

~ ' ®

then the bias of the trimmed-Jacknifed kernel density estimator T;)a m3y be

written as :
1 Yiva 1 -
B{a;x) = ————r— J [ 5 K[ X 5 Y ] - m(x) ] dF(y) +
1 - 2a y
L 23
L7 1-e0) 1 X -
[EK[ - y] —m(x)] dF(y) +
J -
L (o0

L7 1-a) L[ L7 (1-a) + £(x) ] +
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L7 L[ L7 o) + £ix) ] } + 0 (1/n) (5.2)

where Yo is the ath percentile of F.

The bias function B(a;x) is a continuous function of o, where 0 a < 1/2.

VI. BEHAVIOR OF BIAS FUNCTION NEAR a = 1-2.
We shall now investigate how B(a,x) behsves near a = 1/2. For this

purpose, we shall compute the limit im _ B(o;x).

a—> 1./2
Assuming L to be a symmetric distribution, then we can rewrite (4.10) as
V. .-V o '
Blo;x) = —2 & [%—K[%—Z—] -mx) T ECY ) +
1 - 2a

»* A

K[ E_:_JL__‘] - m(x)] f(y#ﬁ) +

L—i(l—a) LY [
b

1 - 2a

Tl

AT [1[1aw + 10 ) - L[ 1@ s £ ) | +

Yo = yﬁ = Yi-a
0 (i/n) , ) (6.1)
P L) <y < L 1-a)

using the mean-value theorem of integral calculus. Also, assuming that the

unknown density function f(y) is symmetric, then by L 'Hospital’'s rule we hsve

v, -y S CF (e - F N )

lim lim =
- - -2
X —> 4/2 o1 - 2a a —> 41/2

Similarly,




-1 -1
} L "(1-0) -L (&) _ 1
L lim 1~ 5a = L700)
A —» 2/2

where L' (0) is the density at z = 0 of the random variable Z defined by

Z=f(x)+%K[X;Y]-m(x)

Also by L Hospital 's rule, we have

LT - [ A _uf ]:
L L[L (1a)+f(x)] L[L (a)+f(x)] - 0

Thus,
¢ 1 1
lim B(eGX) = wrec [— K[ 5] - m(x) ] £(0) %
a —> 1/2— ka) b b
1 1 X
e [GK[E] - m(x)] £(Q)
- 11 X1 _ . £(0)
= [ b K[ b ] m(x)} ] [ 1+ T7(0) ] (6.2)
° From the last expression, we see that the Bias will be positive or negative
depending on whether % K [%] - m(x) 1s positive or negative.
We notice that by appropriately choosing the Kernel function K through
variance reduction or inflation, we can control the sign of the bias (see
Section IX for practical issues). Hence, we are led to the following result.
Theorem 1 The sign of the biss near a = 1/2 is dependent only upon the choice
o

of the Kernel function K.

YII. BIAS WHEN o = O.

When o = 0, the estimates given by T reduces to che jacknifed density
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estimators considered by kustagi and Dynin (1885). They gave the expression
for biss
r r
hh—ihh (hn - hn—t)

bias(f ) = —————— 700 [ K2 £ dz (7.
Ah T, - nDy (es2yt

4

where r is the number defined by (2.5) in choosing a Kernel and in practice,

is taken to be 2.

VIII. IMPLICATIONS

The sign of the bias at « = 0 is independent of the choice of the Kernel
function k(.); it only dependé'upon the 4th (when r=2) order derivative of
the density function f(x); i:e. the sign of the bias at a« = 0 iz constant for
any choice of the kernel fhnction RK(.). With =n appropriate choice of the
kernel K(.), the sign of the bias nesr o = 1/2 can be made opposite to the
sign of the bias at zero. Since the bias function B{a;x) is continuous (and
in fact, differentiable) for an approprizte choice of the Kernel function
K(.), there exists a proportion a# at which biss is =zero. -We have thus

proven the following result:

Theorem 2. For a given point. x, there exists a Kernel function K(.) and a
trimming proportion o for which the trimmed Jacknifed Kernel density

estimator is unbiased.

IX. PRACTICAL ISSUES AND PROPOSED SOLUTIONS
Three practical i1ssues immediately call for attention. They are :

(91) The expression for the bias at @ = 0 is in terms of the unknown pdf

(r+2>

£(.). Since the estimates for the derivative fn x) is the

(r+2)th derivative (Roscom, 1990) of the Kernel estimate (2.1), We  ©3n
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S Ar+2

estimate (7.1) using fn (x). This gives 3 practical way of determining

the sign of the bhias 3t o = u.

(9ii) How to choose the appropriate kernel function K(.). We may start with

a particular kernel funection K(.).

We may chonse a rectangular kernel function K(.):

If we choose K(.} to be the symmetric rectangular density at (-a&,a), then by
choosing the endpoint a with [ﬁ‘) a. K(x/b) have a value of zero;
consequenti&, % K[%] - m(x) would be negative. On the other hand, if K(x/b)

is made to be positive specifically made to have a vaiue 1/(2a)y, then

x+8h .
m(x) = j 5—%7ﬂ;7 dF(y)= E:?75TT : % K (%]
x-ab e “dy ‘ |
and thus % K [%] - m(x) would he non-negative.

Or we may choose a normal kernel:
If we choose K(.) &3 the standard normal, then our procedure goes as
. follows:

A~

If B [fj(x)] > U then we want

p 1
%p[%J<__ (8.1
2von
If (8.1) is sa2iicfied, then we adopt K(.) = ¢(.), the standard normal

kernel; otherwise choose a variance reducing factor § such that

kG

O fe—
TIx

1
¢ —— (8.2)
2v2an
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B8 >-—%— f/— In (b/2) {8.3)

IfB (fj(x)] < ) then we choose & variance-inflating factor @&:

B« /2y (v.4)

(9iii) How to find o

The bias function B(o;x) is a continuous (in fact diffferentiable)
function of a. A computer search. for a* can be initiated using standard
numerical analysis methods. This search can be done alongside the empirical
verificatlon that indeed bias is eliminated through the calculation of both.
the Mean Squared Error and variance of %n(x). These two quantities being
egual would be an indication that %n(x) is unbissed for f(x). As a first

. R K . .
approximation to o ., we may take the first term in the Newton-Raphson

B(O)

algorithm : o= -

B'(0)
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