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Abstract: This paper shows that .there exists a kernel function K and a

•trimming proportion 0 for the trimmed Jacknifed Kernel' Density Estimators

that will render the kernel density estimators unbiased. Practical ways are

suggested for implementing the result of the paper.
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1'. r NTRODUCTI ON

An estimate of the probability density function f(x) of a distribution F

is an important input in most data analysis procedures. In applications, the

kernel density method of density estimation is extensivelY used. The

estimates obtained, using non-negative kernels, however, turn out to be

biased. The method of Jackknifing can be used to reduce the bias. Robust

•

•

methods are preferable, in as much as in practicl::, data may contain outliers

and also, the pseudo-values . m jackknifing procedures are fat-tailed in

distribution and are not independent. A simple alternative to make it robust

was developed by Hinkley and Wang (1980). The method consists in taking the

trimmed aver-age of the pseudo·-va.lues .
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I I. KERNEL DENSI TY ESTI MATORS

Given an iid sample Y
i

, Yz ' ... , Y
n

, it is often necessary to estimate

the density f(x) at a point x of the distribution F which generated the

random sample. Kernel density estimators, denoted by f (x), form a class
n

of estimators used for this task; .they are defined by

f (x)
n

where n is the sample size;

1=nh
n

i.=1

(2.1) •

h is the window or band width and is chosen in an optimal manner in
n

the sense of integrated mean square error. I t is a funct aon of the

distribution F; hence we can write h =h (F); and,., n

K(.) is the specified kernel function which satisfies:

(i) sup I k(x) I < 00 ;

(ii) J k(x) dx = 1

(iii) lim x k(x)
x-+oo

=0

(2;2)

(2.3)

(2.4)

•

(iv) 3 r e Z+ ~ (2.5)

J Xi. k( x) dx = 0 for i = 1,2, ... , r - 1;

f x
T

k(x) dx ~ 0; and

f I x
r

k(x) I dx < 00 •

Remark: The usual choices for K(.) are probability density functions like the

normaI distribution.

•

•
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III. KERNEL DENSITY ESTIMATORS AS STATISTICAL FUNCTIONALS

Let F 'denote the empirical distribution function determined by the
n

sample Yt , Yz ' ... , Yn thus

tl

•
F (x) =

n

__ {0'1 if t < 0
where b (t)

if t ~ 0

We can rewrite (2.1) as

This shows that f (x) depends on the data Y , Y , ... , Y only through the
n i Z n

•

J_1 (x-y)fn(x) = h K --:h-- dFn(Y)
n n

d~stribption function Fn; thus fn(x) is a functional of the

(3.1)

form T(F ).
n

Rus~agi, Javier and Victoria (1989) derived its influence curve as

_ 1 (x- y ) 1 (X- y )tt(Fn;x,y) - -h- K h + b K b
n n

(3.2)

where b =sup{h}. At the underlying distribution F, the influence curve isn .

. _ 1 (x - y)t t (F , x, y) -- b K b (3.3)

• I V~ CHARACTERI ZATI ON OF A TRI.MMED J ACKNI FE ESTI MATOR AS A STATI STI CAL

FUNCTIONAL

Following Hinkley and Wang (1980), let the statistical functional

T(F) =f(x) be defined by T(F ) =f (x).
,n n

Denote by F . the empirical
n,-J

distribution based on the observations Yt , 'Yz ' ... , Y with the
n

jth

•
observation Y. removed. Then the jth pseudovalue P . is defined by

J n,-J



P . == n T(F ) - (n - 1) T( F .)
n-J n n,-J

=T(F ) + (n-1) [ T(F ) - T(F .)]
n n n,-J

for j = 1, 2, ... , n.

Let these pseudo-values be arranged as ordered statistics

(4.1)

74 •

p s p s
(n,-i) (n,-Z)

::s p
(n,-n)

For a given trimming·proportion Ot (say Ot =0.05), we remove the first 0(

smallest and the Ot largest pseudo-values and average the remaining n( 1-2Ot)

pseudo-values. This average is the ce-t.r inmed jacknifed estimate for T(F) =
f(x), g iven by

n - r
1

Ol

T - L p . (4.2)
n,Ot

( 1 20()
(n,-J)

n - j = r + 1
Ol

where. r z; [nOt].
l.lt .

Using a Taylor's expansion for T(F ) about the pal'ent distribution F,
n

Hinley and Wang (1980) evaluated the expression inside the square bracket in

(4.1),· giving a characterization ofT in terms of its first-order Von
n, Ct

•

•

Mises derivative:

T =- t''\F) +
n ,Ol

where.

1

1 - 2d.

1
n

n

I t~'(F;Xj)
j=t

+ 0 (lIn)p
(4.3)

(4.4) •

L(z) ::; pr[ T(F) + tt(F;Y) s z] ;

t ~(F ; x) == ~ t [ T(F + t (b x - F» - c,(F) ] It =0

(4.5)

(4.6)

•
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The function defined by (4.6) is the first-order Von Hises derivative,

also called the influence curve, of the statIstical functional T(F), (Hampel.

1974) where b is the degenerate distribution function with mass concentratedx

at x.

(4.7)

•
t
2(F;x,Y)

is the second order Von Mises derivative; it is zero for kerneal

density estimators and finailY [t (F:x)]l-o is defined by
1 . a .

i-a
(1- 2o.)[t

1(F;x)]o.
,. == t

1(F;x)

L-1(Ot) -1
if t/F;x) < L (a)

(4.8)

v. THE BIAS FUNCTION

• Using equations (4.3) - (4.8) with T(F) and tt(F;x) replaced by fey) and

[ .~ K ( x. bY) - m(x) ] respectively with

(5.1)

"'-then the bias of the trimmed-Jacknifed kernel density estimator T ma~ be
n,Ot

{t-ot [t K( x bY) - m(x) ] dF(y) +
yo.

(:(1-<» [t K( x bY) - m(x) ] dF(y) +
L (01)

1

1 - 20.
B(Ot;x) == --~-

written as :

•

•
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L-'«X) L( L-'«X,) + f(X») } + 0p(lIn)

where y is the ~th percentile of F.
~

(5.2) •

The bias function B(~;x) is a continuous function of Q, where ~ Q ~ 1/2.

VI 0 BEHAVIOR OF BI AS FUNCTION NEAR or. =1/2.

We shall now investigate how B(or.,x) ber~ves near or. = 1/2. F01' this

purpose, we shall compute the limit lim B(Ot; x).

Assuming L to be a5ymmetric cn.stribut ion, then we can rewrite (4.10) as •
y - Y [1 (.) litB(~;x) = 1-~ ~ b K x b - Y - mc x) ] f(y ) +

1 - 2~

-1 -t
L (1-~) -L (~)

1 - 20t

••
y ) - m<x)] *'"fey ) +

-1
L (1-~)

1 - 20t

•
o (lIn) ,

p -1 Oll! - t
L ( O() s y s L ( 1-0()

(6.1)

using the mean-value theo.rem of integral calculus. Also, assuming that the

=
or. -oJ> 1/2

; lim
. 1 - 201.

lim
Ot -+ 1/2

unknoWn density function fey) is symmetric, then by L'Hospital's rule we have

d -1 -1dX (F (l-or.) - F (or.»

-2

= lim
Ol -oJ> 1l/2

) = 1
f ( 0 ) ~;

•

Similarly,

•



• lim
Ot --. 1/2

-1 -1
L (1-a) -L (a)

1 - 2ex
_ 1
- L'(O)

where L'(O) is the density at z =0 of the random variable Z defined by

Z = f(x) + ~ K ( x ~ Y ) - m(x)

Also by L'Hospital's rule, we have

L- 1 ( 1-ex ) [ [ ) ( ) ]lim _ 1 _ 20t L L-
1
0 -a ) + f(x) - L L-

1
( Ot ) + f(x) ;; 0

ex --. 1/2

•
Thus,

lim
ex --. 1/2

B(Ot;X) - ftO) [~K( ~ ) - m(x) ] f(O) /+

(6.2)

• From the ~ast expression, we see that the Bias will be positive or negative

depending on whether ~ K (~) -m(x) is positive or negative.

We notice that by appropriately choosing the Kernel function K through

variance reduction or inflation, we can control the sign of the bias (see

Section IX for practical issues). Hence, we are led to the following result.

•

•

Theorem 1 The sign of the bias near ex =-1/2 is dependent only upon the choice

of the Kernel function K.

VII. BIAS WHEN Ot =o.

When ex =0, the estimates given by T reduces to cne jacknifed density
~ _ n,ex._ .
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estimators considered bYlmstagi and Dynin (1985). They gave the expression

for bias

•

h r h r(h - h )
n-t n n n-1

,( h r
n-!

(7.1)

where r is the number defined by (2.5) in choosing a Kernel and in practice,

is taken to be 2.

VIII. IMPLICATIONS

The sign ofehe bias at Ct = 0 is independent of the choice of the Kernel

function k(.); it only depends upon the 4th (when r=2) order derivative of

the density function f(x); Le. the sign of the bias at Ct. = 0 is constant for

any choice of the kernel function KC.). With an appropriate choice of the

kernel K(.) J the sign of the bias. near I)( = 1/2 can be made opposite to the

sign of the bias at zero. Since the bias function B(o.;x) is continuous (and

in fact, differentiable) for an appropriate choice of the Kernel function
i\t

K( . ) J there exists a proportion Ot at which bias is zero. - We have thus

proven the following re~Jlt:

Theorem ~ For a given point x, there exists a Kernel function. K(.) and a

trimming pt'oportion Otit! for which the t r imaed Jacknif'ed Kernel density

estimator is unbiased.

IX. PRACTICAL ISSUES AND PROPOSED SOLUTIONS

Three practical lssues immediately call for attention. They are

(9i) The expression for the bias at a =0 is in terms of the unknown pdf

•

•

•

f(.) . S · h . f h der i . f (r+2) )moe t e esttmates or t e erivative . (x
n

is the

<r+2)th derivative (Roscom, 1990) of the Kernel estimate (2.1), we can •
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. " (r+2>
estimat.e (7.1) uSHIg f

n
(x). This gives 3 practical way .)f determining

the sign 01' the hias at C/. = I).

(9:i.i) How to choose the appropriate kernel function K(.). We may start with

a particular kernel function K(.) .

We may choose a rectangular kernel functioll }\(.):

If we choose K(.) to be the s~metric rectangular density at (-a,a), then by

IXb l >choosing the endpomt, a with a. K(x!b) have a value of zero;

consequently, ~ K(~] - m(x) would be negative. On the other hand, if. K(X/b)

is made to be positive specifically made to have a Vaiue 1/(2a), then

• JX+8.b 1 1

m(x) = . b (20) dF(y)S b ~ (2a)
x-ab

and thus ~ K (~) - m(x) would be non-negative.

Or we may choose a normal kernel:

~ K (6)

•

If we choose K(.) ~~ tne stand~rd normal, then our procedure goes as

follows:

If B (r j (X») > u then we WaTtt

(9.1)

If (9.1) is 88 7,i:::;fied, then we adopt K(.) =<p(.), the standard normal

Kernel; otherwise choose a variance reducing factor ~ ~ucn that

•

1
-<p
b (9.2)



~ >l/_ In (b/2)
x

If B (f/X») <: 0 then we choose a variance-inflating factor (3:

~ < ~. 1-· In (b/2)

. .*.
(9iii) How· to find ~

80

(9.3)

•

The bias function B(Ct.;x) ~s a continuous (in fact diffferent.iable)

*function of~. A computer search for ~ can be initiated using stanaard

numerical an~lysis methods. This search can be done alongside t.he empirical

ver if icat ron that indeed bias is eliminated through the calculation of both.

•

the Mean Squared Error and variance of f (x).. n These two quantities being

equal would be an indication that f (x) is unbiased for f(x).
n

As a first

approximation to ~*, we may take the first term in the Newton-Raphson

B(O)

B' (0)
algorithm : ~=-~-.,...

1 •
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